Two pathways for ATP release from host cells in enteropathogenic Escherichia coli infection.
نویسندگان
چکیده
We previously reported that enteropathogenic Escherichia coli (EPEC) infection triggered a large release of ATP from the host cell that was correlated with and dependent on EPEC-induced killing of the host cell. We noted, however, that under some circumstances, EPEC-induced ATP release exceeded that which could be accounted for on the basis of host cell killing. For example, EPEC-induced ATP release was potentiated by noncytotoxic agents that elevate host cell cAMP, such as forskolin and cholera toxin, and by exposure to hypotonic medium. These findings and the performance of the EPEC espF mutant led us to hypothesize that the CFTR plays a role in EPEC-induced ATP release that is independent of cell death. We report the results of experiments using specific, cell-permeable CFTR activators and inhibitors, as well as transfection of the CFTR into non-CFTR-expressing cell lines, which incriminate the CFTR as a second pathway for ATP release from host cells. Increased ATP release via CFTR is not accompanied by an increase in EPEC adherence to transfected cells. The CFTR-dependent ATP release pathway becomes activated endogenously later in EPEC infection, and this activation is mediated, at least in part, by generation of extracellular adenosine from the breakdown of released ATP.
منابع مشابه
Release of ATP during host cell killing by enteropathogenic E. coli and its role as a secretory mediator.
Enteropathogenic Escherichia coli (EPEC) causes severe, watery diarrhea in children. We investigated ATP release during EPEC-mediated killing of human cell lines and whether released adenine nucleotides function as secretory mediators. EPEC triggered a release of ATP from all human cell lines tested: HeLa, COS-7, and T84 (colon cells) as measured using a luciferase kit. Accumulation of ATP in t...
متن کاملEffect of zinc in enteropathogenic Escherichia coli infection.
Enteropathogenic Escherichia coli (EPEC) infection triggers the release of ATP from host intestinal cells, and the ATP is broken down to ADP, AMP, and adenosine in the lumen of the intestine. Ecto-5'-nucleotidase (CD73) is the main enzyme responsible for the conversion of 5'-AMP to adenosine, which triggers fluid secretion from host intestinal cells and also has growth-promoting effects on EPEC...
متن کاملThe enteropathogenic Escherichia coli-secreted protein EspZ inhibits host cell apoptosis.
The diarrheagenic pathogen enteropathogenic Escherichia coli (EPEC) limits the death of infected enterocytes early in infection. A number of bacterial molecules and host signaling pathways contribute to the enhanced survival of EPEC-infected host cells. EspZ, a type III secreted effector protein that is unique to EPEC and related "attaching and effacing" (A/E) pathogens, plays a role in limitin...
متن کاملIn vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) belong to a group of bacteria known as attaching and effacing (A/E) pathogens that cause disease by adhering to the lumenal surfaces of their host's intestinal epithelium. EPEC and EHEC are major causes of infectious diarrhea that result in significant childhood morbidity and mortality worldwide. Recent advances in in...
متن کاملCharacterization of two virulence proteins secreted by rabbit enteropathogenic Escherichia coli, EspA and EspB, whose maximal expression is sensitive to host body temperature.
Enteropathogenic Escherichia coli (EPEC) and rabbit EPEC (RDEC-1) cause unique histopathological features on intestinal mucosa, including attaching/effacing (A/E) lesions. Due to the human specificity of EPEC, RDEC-1 has been used as an animal model to study EPEC pathogenesis. At least two of the previously identified EPEC-secreted proteins, EspA and EspB, are required for triggering host epith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 289 3 شماره
صفحات -
تاریخ انتشار 2005